Antagonism of N-methyl-D-aspartate-evoked currents in rat cortical cultures by ARL 15896AR.

نویسندگان

  • G A Mealing
  • T H Lanthorn
  • D L Small
  • M A Black
  • N B Laferriere
  • P Morley
چکیده

The purpose of this study was to characterize the kinetics and voltage-dependence of the block of N-methyl-D-aspartate (NMDA)-induced currents in primary cultures of rat cortical neurons by the neuroprotective, low-affinity, NMDA antagonist ARL 15896AR, using whole-cell voltage-clamp techniques. ARL 15896AR caused rapid and reversible inhibition of NMDA (50 microM)-evoked currents from neurons held at -60 mV, with an IC50 of 9.8 microM. The EC50 for NMDA was not significantly affected by 10 microM ARL 15896AR (P > .05), consistent with a noncompetitive mechanism of block. ARL 15896AR antagonism was use-dependent, because application of the drug 60 sec before NMDA did not attenuate the initial NMDA-evoked current, although the block developed rapidly thereafter. Once bound, ARL 15896AR remained trapped upon removal of NMDA until subsequent NMDA re-exposure, whereupon currents recovered rapidly. The forward and reverse binding rate constants were estimated to be 2.406 x 10(4) M(-1) sec(-1) and 0.722 sec(-1), respectively. Antagonism was strongly voltage-dependent; the K(D) values at 0 and -60 mV were 60 and 11 microM, respectively. Additionally, there was a component of the block by ARL 15896AR that was voltage-insensitive. This component of the block did not act at the ligand binding site, because it was not influenced by NMDA concentration, or at the polyamine site, because it was not affected by spermine. However, there was an interaction of ARL 15896AR with the glycine regulatory site. In contrast to many uncompetitive NMDA antagonists, like MK-801, ARL 15896AR exhibited rapid kinetics. This property may result in a large margin of safety while maintaining the efficacy associated with use-dependent NMDA antagonists, making this compound an excellent candidate for clinical trials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

-(S)-Alpha-phenyl-2-pyridine-ethanamine Dihydrochloride-, a low affinity uncompetitive N-methyl-D-aspartic acid antagonist, is effective in rodent models of global and focal ischemia.

[(S)-Alpha-phenyl-2-pyridine-ethanamine dihydrochloride] (ARL 15896AR) is a low affinity uncompetitive N-methyl-D-aspartic acid receptor antagonist that was tested in animal models of anoxia and ischemia. Pretreatment of rodents with ARL 15896AR extended survival time during exposure to hypoxia. With the rat four-vessel occlusion model of global ischemia (20 min), oral dosing commencing at refl...

متن کامل

Antagonism of N-methyl-D-aspartate receptors by sigma site ligands: potency, subtype-selectivity and mechanisms of inhibition.

Recent studies propose that sigma site ligands antagonize N-methyl-D-aspartate (NMDA) receptors by either direct, or indirect mechanisms of inhibition. To investigate this question further we used electrical recordings to assay actions of seventeen structurally diverse sigma site ligands on three diheteromeric subunit combinations of cloned rat NMDA receptors expressed in Xenopus oocytes: NR1a ...

متن کامل

Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist

BACKGROUND AND PURPOSE Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA...

متن کامل

σ receptor 1 is preferentially involved in modulation of N-methyl-D-aspartate receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

Using patch-clamp whole-cell recording, we investigated how activation of the sigma receptor 1 (σR1) modulates light-evoked excitatory postsynaptic currents (eEPSCs) of ganglion cells (GCs) in rat retinal slice preparations. Bath application of the σR1 agonist SKF10047 (SKF) suppressed N-methyl-D-aspartate (NMDA) receptor-mediated eEPSCs at different holding potentials in ON, OFF and ON-OFF GCs...

متن کامل

Ethanol modulation of nicotinic acetylcholine receptor currents in cultured cortical neurons.

Ethanol, at physiologically relevant concentrations, significantly enhanced high-affinity neuronal nicotinic acetylcholine receptor (NnAChR) currents insensitive to alpha-bungarotoxin (alpha-BuTX-ICs) in cultured rat cortical neurons in a fast and reversible manner, as determined by standard whole-cell patch-clamp recording techniques. The enhancement was (mean +/- S.D.) 7.7 +/- 5% to 192 +/- 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 1997